DFG Logo
Schwerpunktprogramm SPP 1285
Halbleiter Spintronik
Spintronik > Projekte > Projektansicht


Prof. Dr. G. Burkard

RWTH Aachen
Institut für Theoretische Physik C
Fachbereich Physik
D-52056 Aachen

Tel.:+41 61 267 3694 (until 1.4.07)
Fax:+41 61 267 1349 (until 1.4.07)
Prof. Dr. U. Schollwöck

RWTH Aachen
Institut für Theoretische Physik C
Fachbereich Physik
D-52056 Aachen

Tel.:+49 241 8027 034
Fax:+49 241 8022 188
Coherence and entanglement of spin qubits in semiconductor nanostructures

The aim of this project is an improved theoretical understanding of the fundamentals of quantum phase coherence of single spins in quantum dots and quantum wires. To this end, the relevant physical processes leading to decoherence (loss of coherence) will be investigated. For electron spins, one of the dominant decoherence mechanisms is the hyperfine coupling to the surrounding nuclear spins. For both electron and hole spins, the spin-orbit coupling to the lattice vibrations (phonons) also needs to be taken into consideration. A better theoretical understanding of spin decoherence in semiconductor structures is urgently needed, as electron spins in semiconductor structures have been identified as promising candidates for carriers of quantum information (qubits). Also, new structures are currently being fabricated in the laboratory for which spin decoherence has not (or not sufficiently) been studied. To model decoherence of single spins, analytical methods such as the superoperator formalism are suitable. However, as a single electron spin is coupled to an ensemble of typically 10e5 to 10e6 nuclear spins in a quantum dot, we also plan to apply numerical methods such as the time-dependent density matrix renormalization group.


Wichtige Termine:

15. Sept. 2013:
Deadline für den Sonderband Semiconductor Spintronics (DFG-Abschlussbericht) in physica status solidi b
(nähere Informationen wurden per Email zugeschickt)

30. Sept. - 2. Okt. 2013:
Abschlusstreffen des Schwerpunktprogramms "International workshop on semiconductor spintronics" in der Residenz Würzburg
(nähere Informationen)

Aktuelle Veröffentlichung(en):

C. Drexler, S.A. Tarasenko, P. Olbrich, J. Karch, M. Hirmer, F. Müller, M. Gmitra, J. Fabian, R. Yakimova, S. Lara-Avila, S. Kubatkin, M. Wang, R. Vajtai, P. M. Ajayan, J. Kono, and S.D. Ganichev :  "Magnetic quantum ratchet effect in graphene" Nature Nanotechnology 8, 104 (2013)

J.H. Buß, J. Rudolph, S. Shvarkov, H. Hardtdegen, A.D. Wieck, and D. Hägele:  "Long electron spin coherence in ion‐implanted GaN: The role of localization" Appl. Phys. Lett. 102, 192102 (2013)

D.J. English, J. Hübner, P.S. Eldridge, D. Taylor, M. Henini, R.T. Harley, and M. Oestreich:  "Effect of symmetry reduction on the spin dynamics of (001)-oriented GaAs quantum wells" Phys. Rev. B 87, 075304 (2013)

V.L. Korenev, I.A. Akimov, S.V. Zaitsev, V.F. Sapega, L. Langer, D.R. Yakovlev, Yu. A. Danilov, and M. Bayer:  "Dynamic spin polarization by orientation-dependent separation in a ferromagnet–semiconductor hybrid" Nature Communications 3, 959 (2012)

M. Althammer, E.-M. Karrer-Müller, S.T.B. Goennenwein, M. Opel, R. Gross:  "Spin transport and spin dephasing in zinc oxide" Appl. Phys. Lett. 101, 082404 (2012)